+7(922) 144-55-00
Напишите нам
geoinside@mail.ru


ГлавнаяО методеТеоретические основы метода РАП

Теоретические основы метода РАП

 

      Метод РАП относится к категории геофизических методов, изучающих и использующих для получения информации естественные физические поля. Это ставит его в разряд методов с небольшой себестоимостью, так как позволяет обходится без громоздких источников возбуждения.

   Метод использует для получения информации собственное акустическое поле Земли, а именно – поле акустического резонанса, возникающее в толщах горных пород под влиянием различных внешних факторов. Внешними факторами являются источники сейсмической активности земной коры, механические колебания, возникающие в результате напряжений земной толщи, движения планет и многое другое. Под влиянием вышеперечисленных внешних факторов в слоистой толще возникают поперечные упругие колебания. 

   Поперечные упругие волны возникают только в телах,  в которых возможны упругие деформации сдвига. Существование поперечных поверхностных волн является следствием взаимодействия продольных и (или) поперечных упругих волн при отражении этих волн от плоской границы между различными средами. Границей между средами могут быть поверхности ослабленного механического контакта между средами, обусловленные:

  • резкой сменой литотипов пород изучаемого разреза
  • прослоями различного генезиса (углистыми, глинистыми, слюдистыми и т.п.)
  • перерывами в осадконакоплении
  • интрузивными и экструзивными контактами
  • тектоническими нарушениями

границами раздела "осадочный чехол - кристаллический фундамент" и "рыхлые отложения" - осадочный чехол. Чем слабее контакт – тем большая возможностью взаимного перемещения соседних слоев, и, следовательно – больше амплитуда возникающих собственных колебаний. В результате поверхностные волны локализуют энергию возмущений, созданных на поверхности, в сравнительно узком слое. Именно это свойство поверхностных волн приводит к резонансным явлениям. Также любая упругая среда характеризуется тем, что резонансные эффекты в ней проявляются и тогда, когда изначально там не было свободных поверхностей, а затем они появились, например, в результате возникновения и развития трещин. В случае среды «граница твердого тела и жидкости» возникает незатухающая поверхностная волна, что характеризуется повышением амплитуды колебаний. Возможно искусственное усиление амплитуды принимаемых собственых колебаний (приведение акустического датчика в состояние резонанса) путем механического его возбуждения, при этом мощность источника  возбуждения не имеет особого значения. Как правило,  для возбуждения достаточно обыкновенного молотка. При возбуждении (ударе в непосредственной близости от датчика) в датчике наводятся акустические колебания широкой полосы частот, которые, при совпадении с частотами собственных акустических колебаний подповерхностных объектов, вызывают усиление их амплитуды. Частота колебаний обратно пропорциональна мощности колеблющегося «слоя». Под «слоем» понимается толща горных пород, находящаяся между поверхностью наблюдений и поверхностью «ослабленного механического контакта» (ОМК). 

 

     Записав и проанализировав суммарный акустический сигнал, можно вычислить его спектральные характеристики и выделить резонансные частоты колебаний, каждая из которых соответствует мощности соответствующего слоя, то есть – глубине залегания поверхности ослабленного механического контакта, при этом большей глубине залегания соответствует более низкая частота собственых акустических колебаний. Реальные сигналы, записываемые аппаратурой РАП, и их спектральные характеристики можно увидеть на рисунках ниже: